//Visual Accompaniment for Suon Laulu

//Written by Brian Givens for Anne Yoncha, 2023

//Written with significant help from references and tutorials at processing.org

//1 figured out the ffmpeg command with help from https://hamelot.io/visualization/using-ffmpeg-to-
convert-a-set-of-images-into-a-video/

Plmage imgOrig;

Plmage source;

Plmage img;

PGraphics pglmg;

int loc, locB;

color colorC, colorB;

color colorCompC, colorCompB;

int numFrames, numDir, effect, blurStart;
int xOffset, yOffset;

int compC, compB;

int[] xOffsets ={0, -1,-1,-1, 0, 1,1, 1};
int[] yOffsets = {1, 1, 0,-1,-1,-1, 0, 1}
float dispH, dispRatio;

boolean saveOutputimages;

7’

void setup () {
size(800,800);
//Set output image height in pixels Original image is 8222 pixels wide
//Must be even for video creation
dispH = 720;

//Set output image ration (1.33 for 4:3, 1.78 for 16:9)
dispRatio = 16.0/9.0;

//Creates a lower res display window for screen
windowResize(800,int(800/dispRatio));

//Creates img file where work will happen, with specific size
img = createlmage(int(dispH*dispRatio),int(dispH),RGB);

//Loads file used for sorting (Source) and file that will be modified and viewed (imgOrig)
source = loadImage("Peatland extraction soil core sample rotated.jpg");
imgOrig = loadlmage("Sphagnum stem rotated.jpg");

//If you want to save frames as PNG files, set to True
saveOutputimages = true;

//Resizes loaded image files to match specified resolution
//Displayed image will just match width, so it will not be distorted and will have
//black bars on top and bottom. This assumes image will always be wider and shorter than



//display screen (which is the case with the orgiinal imager here).
imgOrig.resize(img.width,0);
source.resize(img.width,img.height);

//Create PGraphics large canvas and load original image in center of space.
//Area outside of the image is black

pglmg = createGraphics(int(dispH*dispRatio),int(dispH));
pglmg.beginDraw();

pglmg.background(color(0,0,0));

pglmg.imageMode(CENTER);
pglmg.image(imgOrig,int(pglmg.width/2),int(pglmg.height/2));
pglmg.imageMode(CORNER);

pgimg.endDraw();

source.loadPixels();

//Initialize variable to record number of frames we have generated (maybe could be replaced by system
variable frameCount?)

numFrames = 0;

//Initialize direction that the blurring algorithm looks in when sorting pixels

numDir = 0;

//Initilize the type of sorting used when sorting pixels

effect = 4;

//Load initial state of the PGraphics canvas to img
img = pgimg.get();

//blurStart controls the portion of the image that is being blurred currenty. The program starts 5 pixels
from the right edge
blurStart = img.width-5;

//Write img back into pGraphics canvas to create single combined image
pglmg.beginDraw();
pglmg.image(img,0,0);
pgimg.endDraw();
}

void draw() {

//Uses numDir variable and offsets arrays to specify distance in x and y that will be used to seelect pixel
to be compared
//to the current pixel for sorting. There are 8 possible directions, up, down, left, right and the diagonals
in between each.

xOffset = xOffsets[numDir];

yOffset = yOffsets[numDir];



//First loop starts at blurStart position and loops x until it reachs the right edge of the image
for(int x=blurStart; x < img.width; x++){

//Load the pixels of img for manipulation

img.loadPixels();
//Loop through all y values, top to bottom

for(int y=0; y < (img.height-1); y++){
//All pixels are numbered sequentially, so calculate the pixel index we are working on based on x and y
coordinate

loc = x + y*img.width;

//The location in the source image to use for comparison with the display image is offset from the
current pixel by the

//amount of xOffset and yOffset. The constrain command makes sure the selected point of
comparision doesn't fall outside

//of the source image.

locB = constrain((x - xOffset),blurStart,img.width-1) + constrain((y - yOffset),0,img.height-
1)*img.width;

//Grab the color values of the img from the orginal location and the comparison location
determined by the offset above

colorC = img.pixels[loc];

colorB = img.pixels[locB];

//Either compare the colors from the second image, source, or the original image.
//If the comparison is numFrames%1, then it will use source every time. If it's numFrames%2 it will
use source every other time, etc

//Get the colors from the source image at the current pixel location and the comparision location
determined above.

colorCompC = source.pixels[loc];

colorCompB = source.pixels[locB];

//Use the colorEffect subroutine to get the values to compare for sorting
compC = colorEffect(colorCompC, effect);
compB = colorEffect(colorCompB, effect);

//Compare the values from above. If the calue from the current location is less than the
comparison location
//switch the pixels in the display image from the current location and the comparison location.
//Since we are basing this comparison on pixels from the cource image, but applying the result to
the display image
//this will create a blurring effect that appears random but it guided by the source image
if (compC < compB) {
img.pixels[loc] = colorB;
img.pixels[locB] = colorC;

}



}

//Once changes are made to the img, update the pixels
img.updatePixels();

//Update the offscreen canvas with the current state of img
pglmg.beginDraw();
pglmg.image(img,0,0);

}

//Once all pixels in the current region have been updated save an image file of the current state
//The file name will include the frame number, so we can make a movie of the images in order.
if (saveOutputimages) {
pgimg.save("'sl-" + nf(frameCount) + ".png");
//ffmpeg command for forward movie: ffmpeg -r 24 -f image2 -s 1280x720 -i sl-%d.png -vcodec
libx264 -crf 25 -pix_fmt yuv420p test500f.mp4
//ffmpeg command for reverse movie: ffmpeg -r 24 -f image2 -s 1280x720 -start_number -1253 -i
sl%d.png -vcodec libx264 -crf 25 -pix_fmt yuv420p test_tenth_0826.mp4
//The value after -r changes the framerate.
//The value after -s is the resolution, it should match the image resolution
//For the reverse movie, the value after -start_number should match the number of the last image
file.
//The very last part is the output file name. Set it to whatever you want it to be called.
//Run this command in the terminal, in the folder where the image files are located.
//Tested on Mac, should work on Windows or Linux if ffmpeg is installed.
}
pglmg.endDraw();
//Increment frame number by 1
numFrames++;

numDir = int(random(8));
effect = int(random(7));

// if (humFrames%10 == 0) {
// image(img,0,0,width,height);
/l}

//Determines number of times the blurred region will blur before expanding. %5 =5 times, %1 =1
time, etc
if (numFrames%10 == 0) {
//As long as blurStart is positive, decrease it by 1 (expanding region closer to left edge)
if (blurStart > 0) {
blurStart--;
printin("Blurred ", nf(float(img.width-blurStart)/float(img.width)*100,0,2), "% of screen");
//Once the left edge is reached, stop the program
}else{
exit();
1



// if (numFrames == 500) {
/] exit();

/l}

}

//Select how the blurring comparison will be made, based on the variable "effect"
//There are 7 possible numerical values that can be extracted from a pixel:

//alpha, brightness, hue and saturation and the red, green and blue components

//Once the type of comparison is selected, the appropriate value for the pixel is returned.

int colorEffect(color incColor, int effNum) {
int eff=0;

switch(effNum) {
case 0:

eff = int(alpha(incColor));
case 1:

eff = int(blue(incColor));
case 2:

eff = int(brightness(incColor));
case 3:

eff = int(green(incColor));
case 4:

eff = int(hue(incColor));
case 5:

eff = int(red(incColor));
case 6:

eff = int(saturation(incColor));
}

return eff;

}



